TIGER: A TEXTURE-ILLUMINATION GUIDED ENERGY RESPONSE MODEL FOR ILLUMINATION ROBUST LOCAL SALIENCY

B. CHWYL (bchwyl@uwaterloo.ca), A. G. CHUNG, F. Y. LI, A. WONG, D. A. CLAUSI

VISION AND IMAGE PROCESSING RESEARCH GROUP, SYSTEMS DESIGN ENGINEERING, UNIVERSITY OF WATERLOO

Abstract

• A novel texture-illumination guided energy response (TIGER) model for illumination robust local saliency is proposed.
• Local saliency is quantified by a modified Hessian energy response guided by a weighted aggregate of texture and illumination components from an image.
• Higher correlation between local saliency maps constructed from the same scene under different illumination conditions can be achieved.

Background Information

• Local saliency detection is necessary in a variety of computer vision and image processing tasks.
 • Point/Object Tracking
 • Object recognition
 • Keypoint detection
 • Content based image retrieval
• Common approaches for local keypoint detection include:
 • Laplacian of Gaussian (LoG) response [1]
 • Difference of Gaussians (DoG) response [2]
 • Hessian-based response model [3]
• A local saliency model that is robust to varying illumination conditions is highly desirable for image processing and computer vision tasks.
 • Spatially varying illumination conditions poses problems in current state of the art.
 • Local saliency detection under varying illumination is not well explored.
• Existing illumination robust local saliency techniques are greatly dependant on the scene.

Experimental Setup

A total of 49 images across 10 different scenes were tested.

Datasets used:
 • ViCS (Self recorded)
 • Select from Yale Face II [4]
 • GTILT [5]
 • AMOS [6]
• Algorithms tested:
 • TIGER
 • Laplacian of Gaussian (LoG) [3]
 • Difference of Gaussians (DoG) [2]
 • Hessian [3]

Methods

TIGER Local Saliency Model

In Hessian-based approaches, the Hessian matrix, Φ, is used to quantify local saliency at each pixel.

$$\Phi(i) = \left(\begin{array}{c} \Delta x L(i) \\ \Delta y L(i) \\ \Delta x^2 L(i) \\ \Delta y^2 L(i) \\ \Delta xy L(i) \end{array} \right)$$

where Δx represents a gradient in the x direction, Δy and Δxy are gradients in the x and y directions, respectively. We model the image, I, as an additive composition of texture, T, and illumination, L.

$$I = T + L$$

A modified Hessian matrix, Φ_q, can thus be produced as

$$\Phi_q(i) = \left(\begin{array}{c} \Delta x^2 (T + L) + \Delta xy (T + L) \\ \Delta (T + L) \\ \Delta y^2 (T + L) \end{array} \right)$$

where α and β are empirically determined constants. Local saliency, s, is determined as

$$s = \Phi_q(i)$$

By repeating this process for each pixel within an image, I, a local saliency map is produced.

Bayesian Disassociation

To produce the modified Hessian matrix described in Eq. 1, T and L are required.
• Produce an estimate of L (denoted as \hat{L}).
• Approximate \hat{T} as the residual between I and \hat{L}, i.e., $\hat{T} = I - \hat{L}$.

We formulate the estimation of L, as a Bayesian least-squares minimization problem:

$$L = \arg\min L(E(L)|L) = \arg\min \left(\sum_i (E(L_i)-L_i) \right)$$

where $E(L)$ denotes the expectation. This equation can be solved as

$$L = \int L(p(L|E))$$

Posterior Probability Estimation

The posterior probability, $p(L|E)$, is required to solve the Bayesian minimization.
• Unknown and difficult to obtain analytically.

For this reason, a non-parametric Monte Carlo sampling approach is used [7]:
• GOAL: Establishe a set of pixels, Ω, within a region, q_i, surrounding the pixel of interest, q.
 • Uniformly sample from Ω with equal probability.
 • Likelihood of accepting the 4th pixel into Ω is based on an acceptability probability, $\gamma(q_i)$.

Estimate $p(L(q))$ as a weighted histogram of all pixels in Ω.

$$\gamma(q_i) = \exp\left(\sigma - \frac{1}{\sqrt{2\pi}} \left(\sum_{i=1}^n \frac{||L_i - E(L)||}{\sigma} \right) \right)$$

and the weighted histogram is calculated as

$$p(L) = \frac{\sum_{i=1}^n \gamma(q_i)(L_i - E(L_i))}{\sum_{i=1}^n \gamma(q_i)}$$

References

This work was supported by the Natural Sciences and Engineering Research Council of Canada, Ontario Ministry of Research and Innovation, and the Canada Research Chairs Program.