Research Topics

Biomedical Imaging

The current plethora of imaging technologies such as magnetic resonance imaging (MR), computed tomography (CT), position emission tomography (PET), optical coherence tomography (OCT), and ultrasound provide great insight into the different anatomical and functional processes of the human body.

Computer Vision

Computer vision is the science and technology of teaching a computer to interpret images and video as well as a typical human. Technically, computer vision encompasses the fields of image/video processing, pattern recognition, biological vision, artificial intelligence, augmented reality, mathematical modeling, statistics, probability, optimization, 2D sensors, and photography.

Image Segmentation/Classification

Extracting information from a digital image often depends on first identifying desired objects or breaking down the image into homogenous regions (a process called 'segmentation') and then assigning these objects to particular classes (a process called 'classification'). This is a fundamental part of computer vision, combining image processing and pattern recognition techniques.

Multiresolution Techniques

The VIP lab has a particularly extensive history with multiresolution methods, and a significant number of research students have explored this theme. Multiresolution methods are very broad, essentially meaning than an image or video is modeled, represented, or features extracted on more than one scale, somehow allowing both local and non-local phenomena.

Remote Sensing

Remote sensing, or the science of capturing data of the earth from airplanes or satellites, enables regular monitoring of land, ocean, and atmosphere expanses, representing data that cannot be captured using any other means. A vast amount of information is generated by remote sensing platforms and there is an obvious need to analyze the data accurately and efficiently.

Scientific Imaging

Scientific Imaging refers to working on two- or three-dimensional imagery taken for a scientific purpose, in most cases acquired either through a microscope or remotely-sensed images taken at a distance.

Stochastic Models

In many image processing, computer vision, and pattern recognition applications, there is often a large degree of uncertainty associated with factors such as the appearance of the underlying scene within the acquired data, the location and trajectory of the object of interest, the physical appearance (e.g., size, shape, color, etc.) of the objects being detected, etc.

Video Analysis

Video analysis is a field within computer vision that involves the automatic interpretation of digital video using computer algorithms. Although humans are readily able to interpret digital video, developing algorithms for the computer to perform the same task has been highly evasive and is now an active research field.