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Abstract— The accurate detection of object boundaries via
active contours is an ongoing research topic in computer vision.
Most active contours converge towards some desired contour by
minimizing a sum of internal (prior) and external (image mea-
surement) energy terms. Such an approach is elegant, but suffers
from a slow convergence rate and frequently mis-converges in the
presence of noise or complex contours.

To address these limitations, a decoupled active contour (DAC)
is developed which applies the two energy terms separately.
Essentially, the DAC consists of a measurement update step,
employing a Hidden Markov Model (HMM) and Viterbi search,
and then a separate prior step, which modifies the updated curve
based on the relative strengths of the measurement uncertainty
and the non-stationary prior. By separating the measurement
and prior steps, the algorithm is less likely to mis-converge;
furthermore, the use of a Viterbi optimizer allows the method to
converge far more rapidly than energy-based iterative solvers.

The results clearly demonstrate that the proposed approach
is robust to noise, can capture regions of very high curvature,
and exhibits limited dependence on contour initialization or
parameter settings. Compared to five other published methods
and across many image sets, the DAC is found to be faster with
better or comparable segmentation accuracy.

Index Terms— Snake, deformable model, active contour, im-
portance sampling, Viterbi algorithm, statistical data fusion

I. INTRODUCTION

The task of locating exact boundaries of objects in cluttered and
noisy environments has many applications in object tracking [1],
content based image and video retrieval [2], [3], robotics [4],
image composition [5], [6] and biomedical engineering [7], [8].
Energy minimizing splines, also known as deformable snakes or
active contours [9], [10], [11], [12], [13], are the key approaches
in the computer vision literature for such boundary extraction
problems.

The principal idea in active-contour based boundary extraction
is to minimize the sum of internal (prior) and external (image-
based) energies to obtain an optimum boundary. The internal
energy typically asserts a first- or second-order smoothness con-
straint on the boundary, whereas the external energy applies a
“force” on the boundary, creating an attractive force, typically
towards areas of high gradient. Since the original development of
snake methods [9], a great many variations have been developed,
falling broadly into three classes: parametric [9], [14], [15], [16],
[17], [13], [1], [18], [19], non-parametric or geometric active
contour [11], [10], [20], [21], [22], [23] and physics inspired
particle based [24], [25].

Despite this large number of approaches, none of the parametric
active contours are able to handle the problems associated with
image noise contamination, complex high curvature boundaries,
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algorithm parameter sensitivity, initialization sensitivity, ineffec-
tive stopping criteria and slow convergence rate. Non-parametric
approaches are initialization independent and are able to handle
high curvature regions and topology naturally. However, non-
parametric active contours are not able to extract the boundaries
of objects having open or broken edges. Furthermore, non-
parametric active contours are comparatively slower and more
sensitive to noise compared to parametric methods.

In tackling these issues, our research led to a novel parametric
decoupled active contour (DAC) method, sharing the same formu-
lation and origins of conventional deformable models. However,
instead of discretizing and iteratively minimizing the total energy,
as in most approaches, our method alternately minimizes the
external energy within a specified region, then separately asserts
the prior constraints to force the boundary to satisfy required
smoothness. The adaptivity of the method to sharp corners is
satisfied by importance sampling [26] on the basis of curvature.
Although the DAC is parametric, there is limited parameter
sensitivity as the parameter values are derived implicitly from
the image curvature and gradient.

To validate the DAC’s claims, we have evaluated the perfor-
mance of DAC compared to five state-of-the-art segmentation
algorithms [9], [16], [17], [23], [21], [27], using three test
approaches: a comprehensive quantitative segmentation accu-
racy evaluation on the Weizmann database [27], a quantitative
evaluation of boundary identification accuracy and convergence
speed using natural and synthetic images, and an evaluation of
DAC capabilities through illustrative examples. The experimental
results show a dramatic improvement of the DAC compared to
existing parametric active contours, across all five criteria of high
curvature, noise, parameter sensitivity, initialization, and speed.
Compared to nonparametric approaches, DAC performed better
in finding single-object boundaries in the presence of noise and
background clutter at a lower computational cost.

The remainder of the paper is organized as follows. Section II
reviews existing active contours. Section III explains the proposed
methods, with results and comparisons shown in Section IV.

II. BACKGROUND

This section reviews the different type of active contour models,
their solution, and corresponding limitations.

A. Active Contour Models

Parametric or implicit active contour models were first pur-
posed by Kass et al. [9], implicitly expressed as an energy
minimizing curve v(s) = (x(s), y(s)), s ∈ [0, 1], with normalized
arclength s. The goal is to deform the spline to minimize the



energy functional:

E =

1∫
0

α(s)v2s(s)︸ ︷︷ ︸
Elastic

+ β(s)v2ss(s)︸ ︷︷ ︸
Thin−plate

− γ(s)Eext(v(s))︸ ︷︷ ︸
External

 ds (1)

where vs(s) and vss(s) are the first and second derivatives of
v(s) with respect to arclength s, and the parameters α(s), β(s)

and γ(s) are the weight factors for penalties on slope, curvature
and the external force of the active contours, respectively. Further,
α(s), β(s) and γ(s) may be a function of spatial location, but are
constants in practice.

The internal energy, representing the prior, is some weighted
sum of elastic and thin-plate energies, whereas the external
potential is computed from the image I in a manner dependant
upon the application. Typically, the contour should converge to
image edges, so the energy is made a function of the magnitude
of the image gradient (g)

Eext = (g(I))2 = (|δGσ ∗ I|)2 (2)

for some first derivative of Gaussian (δGσ) with bandwidth σ,
where ∗ is the convolution operator.

The curve deforms under the (typically opposing) influences
of internal and external energies. The internal energy seeks to
make the curve smooth, while the external energy forces the curve
towards object boundaries. We identify three inherent problems
with the classical snake:

(i) There is a delicate balance required between the energy
parameters α(s), β(s) and γ(s), and it is typical for
parameter settings to lead to mis-convergence.

(ii) The standard external and internal forces are not able to
pull the snake into concave regions.

(iii) In many cases (1) is numerically stiff, meaning that
the iterative solution of (1) tends to be slow, and this
worsens if the active contour is initialized far from the
true solution, implying a limited capture range.

To increase the convergence speed and capture range, most
variations on the parametric active contour have concentrated
on altering the external energy, such as the pressure based
balloon force [28], distance transformed image gradient [14], [15],
gradient vector flow [16] and vector field convolution [17] of
image gradient. Leymarie et al. [1] suggested a better termina-
tion criterion with detailed analysis of various parametric snake
models for tracking applications. For handling contours of high
curvature, Wong et al. [18] proposed a segmented snake model,
which follows a dual optimization approach, with a rough estimate
obtained using a classical snake, followed by a recursive split and
merge approach.

A fundamentally separate approach is formulated in geometric
terms, such as the geometric active contour (GAC) of Malladi
et al. [11] and Caselles et al. [10]. The contour is described in
the level-set framework of Osher et al. [29], which allows curve
splitting and merging to be handled more naturally than with a
spline. Caselles et al. [30] and Siddiqi et al. [31] reformulate
the level-set framework by introducing gradient-weighted length
and area terms to the total energy. To avoid local minima, Cohen
et al. [32] proposed a minimal path approach to find the global
minima associated with the active contour. Mumford-Shah [33]
and Chane-Vese [20], [21] developed another region based active
contour model which can be solved in a level set [29] framework.

The Chane-Vese model does not use the image gradient as its
stopping criterion, and so works efficiently even if there are very
weak edges. Recently, Sundaramoorthi et al. [34] have identified
the problems associated with geometric active contour energy
minimization techniques using Riemannian space. They have
reformulated a generic geometric active contour by redefining the
notion of gradient using a Sobolev type inner product, while using
the level set methods as the evolution framework. To improve
computational complexity, Bresson et al. [23] proposed a new
global optimization method, the fast active contour (FAC), similar
to the GAC model, but with a dual optimization method. Eric et
al. [35] tried a hybrid approach to improve the convergence speed
and initialization robustness of level set based active contour by
combining k-means clustering with the level set framework.

Recently, a new category of active contour models have been
proposed, motivated by laws of physics. Examples include the
gravitational force active contour model [15], the charged particle
model active contour [24] (CPM), and the magneto-static active
contour model (MAC) [25]. The CPM considers each pixel to be
a charged particle attracted by electric fields generated from the
image gradients, claimed to reduce snake initialization sensitivity.
Xie et al. [25] claim that the MAC more effectively captures
complex boundaries than the CPM, however the computational
and algorithmic complexities of the MAC are high.

B. Solution Techniques

The solution to parametric, geometric and physically motivated
active contour models are generally obtained via a discretized
optimization of some energy, such as in (1). Many algorithms
follow from an Euler-Lagrange approach, essentially leading to a
gradient descent optimization of the energy function. Some geo-
metric and physical models may be solved in higher dimensions
using level-set approaches [11], [25].

A wide variety of algorithms have been proposed to address
convergence stability and complexity, such as the aforementioned
FAC [23]. To improve stability, Amini et al. [12] first proposed
dynamic programming to perform the active contour energy opti-
mization, later used more broadly [7], [36], [37], [38]. Williams
and Shah [39] introduced a fast greedy approach to find global
minima of energy functionals.

Because completely unsupervised segmentations based on
dynamic programming can converge to unwanted boundaries,
Mortensen et al. [6] first introduced intelligent scissors – a user-
interactive dynamic programming based graph search method to
locate exact boundaries. Further, GrabCut [40], Lazy snapping [5]
and Bayesian matting [41] were introduced for user-interactive
image segmentation as well.

C. Limitations of Existing Active Contours

The motivation for DAC stem from the following five basic
limitations associated with existing active contour solutions:

1) Robustness to Noise and Background Clutter: Most
active contour solutions are susceptible to local minima,
many of which are created by the presence of noise and
background clutter. In order to avoid the convergence of
the snake towards noise and background clutter Nascimento
et al. [42] proposed a robust snake based upon stroke
grouping and expectation maximization (EM), but such
methods are very time consuming, parameter dependent



and insensitive to high curvature boundaries. Alternatively,
denoising models have been incorporated into the active
contour formulation [23].

2) High Curvature Object Boundaries: A key challenge in
prior-model based parametric active contours is the capture
of regions of high curvature, since most prior models
penalize curvature, but decreased curvature penalties lead
to increased noise sensitivity. Wong et al. [18] proposed
a segmented snake, splitting the snake into a number of
separated regions based on curvature, followed by later
merging. Analogous to a weakened prior, the split/merge
snake is similarly sensitive to noise.

3) Parameter Dependency: Parameter tuning is a common
problem with active contour algorithms [9], [16], [17]. The
selection of appropriate parameters is generally tedious and
image dependent, and the parameter sensitivity precludes
the use of such algorithms in certain applications.

4) Sensitivity to Initialization: The classical parametric
snake is sensitive to initial position, normally manually
supervised, and often fails to converge or takes inordinately
long to converge. To avoid these issues Cohen et al. [28], Xu
et al. [16] and Li and Acton [17] proposed the balloon force,
gradient vector flow snakes and vector field convolution
snakes to extend the capture range, however these two
methods suffer from lower convergence rates and increased
noise sensitivity.

5) Stopping Criteria and Rate of Convergence: The ac-
tive contour evolves iteratively to minimize some energy
functional, ideally stopping once the global minimum is
reached. Because of noise and image clutter the energy
functional is not smooth, causing algorithms to be either
trapped or delayed for many iterations at local minima.
To have a criterion by which the iterative solver is halted
is necessary, or global optimizers need to be developed
such as those based on dynamic programming [12], [6],
simulated annealing [38], or graph search methods [40].
Both the iterative solvers and global optimizers are slow to
converge. Although active contours might otherwise be a
promising approach for image segmentation and tracking,
the slow rate of convergence precludes active contours from
being considered in real-time applications.

III. DECOUPLED ACTIVE CONTOUR (DAC)

To overcome the five limitations mentioned in Section II-C, a
novel unsupervised parametric decoupled active contour (DAC)
has been designed and built for identifying the boundary of a
single object. Because of the slow rate of convergence of standard
active contour methods, it would be desirable to find an optimal,
non-iterative solution. A non-iterative solution can be identified,
in principle, via a Bayesian perspective, with the internal, external
and total energy of the active contour analogous to the prior,
measurement and posterior of a random field. Minimizing the
total energy of the active contour is equivalent to maximizing the
posterior (MAP problem), a complex solution space with a signif-
icant chance of being trapped in a local minimum. The complex,
nonlinear nature of the MAP problem makes an optimal, non-
iterative method essentially impossible, however the key insight
is that the two parts of the snake criterion (1) can, in fact, be
individually locally optimized in a non-iterative fashion. Although
the overall algorithm remains iterative, alternating between the

external and internal criteria, each iteration converges far more
rapidly than the direct iterative solutions to (1). Therefore, DAC
simplifies the optimization step by first ignoring the prior and em-
ploying a Viterbi algorithm to obtain a sub-optimal solution that
is consistent with the measurements, and secondly by asserting
the prior via a Bayesian linear least squares estimator.

The DAC method consists of three steps, illustrated in Fig. 1:
A. Hidden Markov Model (HMM): The visual boundary

finding problem is modeled as an HMM and a Viterbi
search is used to find the solution by dynamic program-
ming. In the absence of image noise and shape prior,
the Viterbi [43] search will identify all of the strongest
local boundaries. Details are developed in Section III-A.

B. Importance Sampling on Curvature: If snake points
are uniformly spaced on the curve, there will be an
excess of points in areas of gentle curvature and too
few points in areas of high curvature. To make a sin-
gle algorithm work in both smooth and high-curvature
portions of a curve, a non-stationary prior is essential,
which is accomplished by placing more snake points
in high-curvature areas, weakening the prior, and fewer
in smooth areas, strengthening the prior. Therefore the
curvature of the Viterbi boundary is computed and
importance sampled to generate non-uniform samples.
Details are developed in Section III-B.

C. Statistical Data Fusion: The non-stationary prior con-
straints need to be traded-off against the strength and
significance of the image gradients. The fused curve is
estimated statistically, as described in Section III-C.

A. Visual Boundary Extraction Using HMM

We seek a non-iterative solution to finding a curve v(s) to
minimize Eext of (1). To avoid undoing the work of previous
iterations, we wish to constrain the search space to seek an
optimum in the vicinity of vp(s), the solution from the previous
iteration. The visual boundary extraction can be formulated as
an HMM on a discrete space, which allows the solution to be
found using a standard Viterbi search. We begin by discretizing
the snake, a collection of q − 1 discrete straight segments with q
discrete locations (the head and tail of the snake do not have to
be connected):

v
(
sj
)

= vzj
∣∣
zj=0

=
(
xj,0, yj,0

)
, sj ∈ [0, 1], j ∈ [1, q] (3)

As illustrated in Fig. 2, at each of the q discretized snake
locations a set of u + 1 points are defined, lying normal to the
curve. Constant-length normals lead to the possibility of a self-
intersecting curve. To deal with this problem, we initially tried an
approach similar to dual front propagation technique [44], where a
medial axis growing and shrinking technique was used to generate
a search space. However, such an approach is computationally
expensive and fails to grow normals outwards from the curve in
areas of high curvature. Instead, we iteratively test and prune the
length of the normals until we obtain nonintersecting normals.

Given the set of non-intersecting normals, the exhaustive set
of (u + 1)q possible snakes over which to optimize may be
represented as the possible transitions through an ordered graph,
as shown in Figs. 3 and 4. We define

zj ∈
[
−u

2
, . . . ,

u

2

]
, j ∈ [1, q], u is even (4)



Convergence test

Fig. 1. Steps involved in DAC on a synthetic V-shaped object. (a) The blue circle shows the initial snake. (b) The red line shows the sub-optimal snake after
a Viterbi search. (c) The small green dots are the particles generated using curvature-based importance sampling on the curvature of the sub-optimal Viterbi
snake. (d) The red line shows the estimated snake following the Bayesian estimator. (e) A test of convergence between the current and previous snakes. If
not converged, return to step (b). (f) The converged snake.

Fig. 2. Description of DAC terminology. sj ∈ [0, 1] where j ∈ [1, q] is
the discretized arclength along the active contour; v is the position in (x, y)
space; vs(s) and N(s) are the tangent and normal vectors at v(s). The jth
normal is constructed at sj , with u+1 possible values (small circles) for the
snake at that normal.

Fig. 3. Circular trellis with an initial snake (blue circle), one possible, albeit
unlikely snake (magenta), normals (green lines) and nodes (small circles along
the normals).

to represent the jth state, such that zj selects which of the u+ 1

evenly distributed points a given snake passes through at the jth
normal. Given a sequence of states

z = [z1, z2, . . . , zq], (5)

if we can determine the energy of this state sequence, then we
have a basis to find the optimal z. Efficient solvers of such graph
problems, such as the Viterbi method [43], allow a cost to be
associated with each state value zj , and with each state transition
zj → zj+1. It is possible to assert prior models with penalties
involving more than two successive state values (such as a penalty
on curvature (1), which requires three successive points):

• We can let each state represent a pair of points, with the
consequence that the size of the graph explodes (see right
panel of Fig. 4), or

• We can separate the optimizing of Eext from the assertion
of the prior, as we have proposed for the DAC, and just use
a simpler graph (see left panel of Fig. 4).

The HMM will therefore be limited to simple inter-point con-
straints. Since the snake prior is to be asserted later, at this point
only the length of the snake is penalized, such that the state
transition probability is represented by

p(zj , zj+1) =
1√

2πσs
exp

(
−
∇v(zj , zj+1)

2σ2s

)
=

1√
2πσs

exp

(
−
∥∥vzj − vzj+1

∥∥
2σ2s

)
(6)

where
vzj
∣∣
zj=i

=
(
xj,i, yj,i

)
(7)

represents the points along the snake, and therefore ‖∇v‖ is the
corresponding arclength between two successive points on the
snake. The term σs represents the spatial standard deviation and
is computed from the distribution of Euclidian distances between
all pairs of points between the jth and (j + 1)th normals. An
alternate transition probability might be the integral of edge map
weighted arclength (

∫ vzj+1
vzj

φds) between vzj and vzj+1 , where
φ = 1/(1 + g) is the edge map of the image. This has the benefit
of evaluating the edge map along each arc, rather than only at
discrete points, however computing the edge map information is
a computationally intensive process, and in practice was found
to offer little to no benefit over the proposed approach based on
Euclidian distance.

Next, the state probability for zj must be related to the external
energy (normally related to the image gradient) at the state
location vzj , thus the state probability is defined as

p(ψ(zj)|zj) =
1

σψ(zj)
exp

(
−
ψ(zj)

σψ(zj)

)
(8)

where the measurement is defined as

ψ(zj) =
1

1 + Eext(zj)
(9)

and σψ(zj) is the standard deviation of the measurements along
the normal j and computed locally from ψ(zj). Eext(zj) is
calculated as per (2).

At this point we have a first-order lattice (Fig. 4, left) with
state and state-transition probabilities defined. In principle, the
optimum contour can be found by solving the joint maximization

max
z1,z2,···zq

p
(
z1, z2, · · · , zq

)
. (10)

However in practice there is no need to find the optimum,
particularly because the proposed algorithm remains iterative, and
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Fig. 4. First and second order trellis, where z1, z2, . . . , zq are the hidden states, and ψ(zj) = ψzj=i,j are the observations. The second-order trellis, right,
has a far higher representation, storage, and computational complexity than the first-order trellis, left. In both cases, u = 2.

Algorithm 1 [vv] = Function Viterbi(z, q, u) [43]
1: Initialization: j=1, Θ(z1) = p(ψ(z1)|z1), Γ(z1) = {0} and
z1 = [−u2 · · ·

u
2 ]

2: while j ≤ q do
3: Θ

(
zj+1

)
= max

zj

(
Θ(zj)× p(zj , zj+1)

)
× p(ψ(zj)|zj)

4: Γ(zj+1) = arg max
zj

(
Θ(zj)p(zj , zj+1)

)
5: j = j + 1

6: end while
7: Termination: zv

q = arg max
zq

(Θ(zq)) , v
v
q = (xq,zv

q
, yq,zv

q
)

8: j = q − 1

9: while j > 2 do
10: zv

j = Γ(zv
j+1), vv

j = (xj,zv
j
, yj,zv

j
)

11: j = j − 1

12: end while

because (10) is only one part of the complete criterion (1). There-
fore finding a sub-optimal path using the Viterbi algorithm [43],
as described in Algorithm. 1 is preferable.

Since the Viterbi search is a sub-optimal algorithm, it is depen-
dent on both the initial state z1 and the ordering of the vertices.
In principle this dependence could be removed by minimizing
over initial state and ordering, however experimentally we found
that this adds little in terms of accuracy, but greatly in terms of
computational burden. By increasing the computational cost of the
Viterbi method from O(u2q) to O(u2q2), where typically q =

300, and where the Viterbi method accounts for approximately
half of the total complexity of the DAC, this minimization slows
the method by a factor of approximately 150. Given the limited
benefit and considerable cost, and given the robust convergence
seen in the results, we propose to use a regular Viterbi method.

The state sequence zv
j , j ∈ [1, q] resulting from the Viterbi

optimization gives rise to the sub-optimal curve

vv
j = vv(sj) = (xj,zv

j
, yj,zv

j
), j ∈ [1, q]. (11)

B. Curvature Guided Importance Sampling

Active contours generally consider stationary elastic and thin-
plate constraints to constitute the prior model of the object. Such
a prior represents a poor hypothesis for complex, high curvature
objects because the degree to which prior smoothness should
be asserted varies with the boundary curvature. Therefore, the
DAC approximates the smoothness of complex boundaries using
stationary elastic and rigidity constraints, but with non-stationary
sampling intervals of the active contour points along the snake,
which will ensure more samples (with correspondingly shorter
active contour segments) near high curvature regions.

The curvature κ of a parametric curve v(s) = (x(s), y(s))

is expressed in terms of the tangent vector vs(s), such that the
curvature is related to the rate of change of the tangent vector

κ(s)×N(s) = vss(s) (12)

where N(s) is the normal vector to the parametric curve v(s),
and where vs, vss represent the first and second derivatives of v.
From [45], (12) can be rewritten as

κ(s) =
xs(s)yss(s)− ys(s)xss(s)

(x2s + y2s)3/2
(13)

where the derivatives are computed numerically using forward
differences. Given the Viterbi boundary vv, we can use discrete
derivatives in (13) to compute the sampled curvature κ. We
propose to resample, with a sampling density proportional to the
negative exponential of curvature:

∆v(s) =
c1
σκ

exp

(
−|κ (s)|

σκ

)
(14)

where ∆v(s) is the discrete arclength of an individual segment of
curve v(s) and σκ is the standard deviation of sampled curvature
κ. If we fix q, the total number of points, then the proportionality
parameter c1 is set to preserve the arc-length of the curve.

Since arbitrarily high curvature is possible, leading to arbitrarily
fine discretization, for practical reasons we seek to limit the
discretization interval as

∆vm(sj) =


∆vmax if ∆v(sj) > ∆vmax

∆vmin if ∆v(sj) < ∆vmin

∆v(sj) otherwise,

(15)

where
1

∆vmax
� q � 1

∆vmin
(16)

to generate q samples vm having a sampling interval of ∆vm(sj).
Fig. 5 illustrates the resampling procedure. The inverse rela-

tionship between curvature and sampling interval are displayed
in panels (b) and (c). The maximal and minimal extents of the
sampling interval are determined by the user specified values of
∆vmax = 8 and ∆vmin = 0.5.

C. Statistical Estimation

Because of the complexity of introducing all but the most trivial
shape priors into the Viterbi boundary extraction, the calculation
of vv and vm have not permitted the assertion of a meaningful
prior. Therefore, to limit the computational complexity of the
Viterbi step, but to retain the assertion of a prior, a separate step
of fusing a shape prior into vm is required. This fusion step is
the subject of this section.
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Fig. 5. (a) A Viterbi boundary. (b) Absolute value of the curvature along
the length of the snake. (c) Arclength of each segment. The red dots identify
six prominent high curvature boundary points.

Because each element of v is, itself, a two-vector coordinate
vmj = (xmj , y

m
j ), to talk about the estimation of v is mathe-

matically ambiguous. Therefore, we will explicitly discuss the
estimation of the components x, y. Let vt = (xt, yt) be the true
and unknown discretized snake points that need to be estimated,
considering vt to be a random vector with the components of vt

satisfying a prior model

xt ∼ N(µ
x
, P ), yt ∼ N(µ

y
, P ). (17)

The boundary constraint P follows from the prior term implied
in (1). The extracted and resampled boundary vm represents a
measurement of vt, thus

xm = Cxx
t + νx, ym = Cyy

t + νy, (18)

where Cx = Cy = I, since each snake point is measured,
and where ν = [νx, νy] is the measurement noise, itself having
statistics

νx, νy ∼ N(0, R). (19)

A Bayesian estimate [46], [47] of v for each component of v can
be obtained by minimizing the expected error norm, such that

x̂ = µ
x

+
(
R−1 + P−1

)−1
R−1

(
xm − µ

x

)
= µ

x
+Kg

(
xm − µ

x

)
. (20)

The term Kg =
(
R−1 + P−1

)−1
R−1 is the Kalman gain,

weighting the measurement residual. The remaining task is to
select µ, P and R, discussed in the next section.

D. Bayesian Model Determination

The active contour literature [9], [16], [28], [30] considers
the constraints on boundary curvature as the prior model of the
object boundary. In practice, such prior models are obtained using
an extensive training approach [48]. However an unsupervised,
broadly applicable, and non-stationary prior is preferred.

In practice, the continuous integral of some function of v(s) is
replaced with a discrete norm over the sampled snake v:

‖Ax‖2 +
∥∥Ay∥∥

2
≈

1∫
0

(
α (s) |vs|2 + β (s) |vss|2

)
ds (21)

Each row of A asserts some discretized constraint on x or y,
where A is banded (here penta-diagonal, for a second-order
constraint). The inverse relationship between prior constraints and
prior covariance lead to the constraints A implicitly specifying the
prior as

P =
(
ATA

)−1
. (22)

Although we treat the weighting factors α(s), β(s) as constant, a
non-stationary prior is acquired by placing the measured samples
non-uniformly on the object boundary (as will be explained in
Section III-E).

The deterministic portion of the prior model is the mean, µ. We
would normally consider µ = 0, in the absence of any specific
deterministic knowledge of the contour shape, however we can
use µ to create biases in snake evolution, leading to expansion or
contraction forces. The mean µ = (µ

x
, µ
y
) is defined as

µ
x

= µc
x

+ (1 + τ) δx, (23)

and similarly for µ
y

, where µc is the center of mass of vm, and δ
is a circle of points with a radius equal to the average separation
of vm from µc. To avoid bias due to varying snake point densities,
the shape center is normalized with respect to arc length:

µc
x

=


q∑
j=1

xmj |x
m
j+1 − x

m
j |

q∑
j=1
|xmj+1 − x

m
j |

 . (24)

The constant τ in (23) is a growth factor on the average radius,
creating an expanding force if τ > 0, and a contracting force if
τ < 0, motivated from the balloon force snake [28].

With a prior model (µ, P ) defined, the key question is the
relative weighting of the measurements versus the prior in (20),
a weighting which is controlled by diagonal covariance R, where

Rjj = r
(
vm(sj)

)
. (25)

We wish the variances to be a function of their respective
image gradients, such that the larger the gradient magnitude
g (2), the more certain the measurement, and the closer R is
to zero. The limiting cases of the measurement variance should
be approximated by

r(g) =


rmax if g = 0
rmax
2 if g = µg

0 if g =∞
, (26)

a relationship easily satisfied using

r(g) = rmax
f(g)

1 + f(g)
(27)

where
f(g) =

1

σg
exp

(
−g − µg

σg

)
. (28)

The rationale behind f is to scale r on the basis of the average
gradient µg and standard deviation of gradients σg along the
observed boundary vm in the image. Because noise pixels do
not form a continuous boundary, therefore near a noisy region
the value of g is smaller, and that of σg larger, leading to a larger
value of r, implying lower measurement certainty.

The effectiveness of this gradient-sensitive measurement vari-
ance is demonstrated in Fig. 6. In particular, Fig. 6(b) shows the
convergence of the active contour by the use of fixed R = I,
meaning that this fixed R fails to discriminate between the
gradients generated by noise and by an object. In contrast, using
the image-dependent R from (27), we weaken the measurements
in noisy regions, giving more weight to the prior, pulling the snake
away from such regions, leading to the excellent convergence
shown in Fig. 6(c).



(a) Initialization (b) Fixed R = I (c) Variable R from (27)

Fig. 6. Demonstration of the role of measurement noise co-variance (R) in the convergence of active contours in the presence of noise. Panel (a) shows
the initial snake overlapping the square object of interest beside a noise cloud. Panel (b) shows the erroneous solution generated with fixed R = I . Panel (c)
shows the correct solution using variable R from (27). Because the calculated gradient is spatially averaged, gradients near continuous (true) boundaries are
stronger than those at discontinuous (noisy) ones.
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Fig. 7. Examples of measurement noise variance r(g) as a function of image
gradient for images D, E, H, I, J and M in Figs. 9 and 10.

To better understand the role of measurement variance, Fig. 7
plots the measurement noise variance (R) for images D, E, H, I,
J and M of Figs. 9 and 10; these images were chosen for their
varying contrast, non-homogeneity, noise, and background clutter.
For uniform contrast foreground and background images (H and
J), r is similar to a step function, because the distribution of
image gradient magnitude follows a narrow band (lower σg). For
nonuniform contrast and noisy images (D, E and I), r changes
towards a inverted sigmoid function, due to a larger variance in
the distribution of image gradient magnitude. For background
cluttered images (M), r is significantly different due to larger
values of the mean and variance of image gradient.

E. Non-Stationary Prior

The prior actually developed in Section III-D has constant α(s)

and β(s), and is therefore stationary. An argument for a non-
stationary prior was motivated in Section III-B, leading to the
rationale for importance sampling. We are now ready to evaluate
this claim.

Recall from (17) the prior

x ∼ N(µx, P ) ≈ N
(
µx, (A

TA)−1
)

(29)

where A is a linear penalty term,

‖Ax‖2 ≈
1∫

0

(
α (s) |xs|2 + β (s) |xss|2

)
ds (30)

such that A synthetically approximates the first and higher
derivatives on the basis of local differences. Correctly computing
a discrete derivative requires taking into account the sampling

0 1
s

X
(s

)

 

 

Fig. 8. Illustration of regularization as function of the number of samples
with constant penalty factor (α(s), β(s)) and R. As the number of samples
decreases the curve inherently becomes more smooth as the prior is asserted
more strongly.

Algorithm 2 vc = Function DAC(z, q, u)

1: k = 1, ASD =∞, ε = 10−4

2: Initialize object boundary as v(sj), sj ∈ [0, 1], j ∈ [1, q]

3: while ASD ≥ ε do
4: Create the trellis and compute the trellis parameters

p(zj , zj+1) and p(ψ(zj)|zj)
5: [vv] = Viterbi(z, q, u)
6: Generate vm applying importance sampling on vv follow-

ing Section III-B
7: Compute v̂k using linear Bayesian estimator (20)
8: Compute the ASD between v̂k and v̂k−1 using (31)
9: v(sj) = v̂kj , sj ∈ [0, 1], j ∈ [1, q].

10: k = k + 1.
11: end while
12: Assign vcj = v(sj), j ∈ [1, q] as the converged boundary.

interval. However because the constraint, represented by A, is
stationary, and does not take the interval into account, therefore
the effective result is to induce a non-stationary discretization of
the derivative, essentially meaning that α(s) is space-varying, an
increasing function of discretization interval.

The resulting phenomenon is illustrated in Fig. 8. Suppose we
have sinusoidal measurements, but a zero (flat) prior. For fixed
values of α and β, as the number of measurement points increases
the influence of the prior on the sinusoidal measurements drops,
implying a weaker prior. As the samples become sparser, the
regularized curve flattens. The net result is a space-varying prior
model, penalizing more strongly in areas of low curvature, and
less so in areas of higher curvature.

The pseudocode for the complete DAC algorithm is provided
in Algorithm 2.



IV. TESTING AND RESULTS

This section describes the experimental data sets, methods
compared, experimental setup and demonstrates quantitative and
qualitative evaluation of DAC compared to five other methods.

A. Evaluation Data Sets and Criterion

Three types of tests are established for evaluating the perfor-
mance of DAC. Test ’A’ (Weizmann database [27]) evaluates the
average segmentation accuracy of DAC compared to other meth-
ods. Test ’B’ (eighteen natural and synthetic images) evaluates
the quantitative and visual boundary identification accuracy and
computational cost. The eighteen images selected for Test ’B’
depict various characteristics: 1) complex background and object
of interest with weak edges (Images A and D of Fig. 9, and
P and R of Fig. 16), 2) natural and synthetic high curvature
images (Images C-H of Fig. 9 and N-O of Fig.12), and 3)
synthetic and natural noisy images (Fig. 10). Test ’C’ evaluates
DAC capabilities mentioned in Section II-C through illustrative
examples.

B. Methods Compared

The performance of DAC is compared to the traditional snake
(TS) [9], gradient vector flow snake (GVFS) [16], vector field con-
volution snake [17], active contour without edges (ACWE) [21]
using Chan-Vese model and fast active contour (FAC) [23].
The current DAC implementation is designed for unsupervised
segmentation of a single complex object in noisy and cluttered
environments. The theory behind DAC is derived from traditional
active contour concepts, so TS is considered for a base compar-
ison. GVFS and VFC increase the capture range making these
approaches less sensitive to initialization.

Region based segmentation approaches [11], [21], [23], [30]
usually employ more global information in defining object bound-
aries and can outperform parametric active contours. Therefore,
ACWE [21], a region based approach that is able to capture
high curvature regions, is tested. Further, to validate DAC’s speed
performance, FAC [23] is tested since it is designed as a very fast
active contour method. Further, FAC and ACWE are designed to
work on noisy images by employing a smoothing model to extract
the active contour, so ACWE and FAC provide a basis on which
to evaluate DAC’s noise robustness.

For completeness, we have used a sample image to compare
DAC to level set [11] (LS), intelligent scissors (IS) [6], and greedy
snake (GS) [39] methods. These methods have characteristics that
do not support extensive test comparisons to DAC. LS is designed
for multiple-object segmentation and oversegments the single-
object images of this paper. IS requires user interaction, whereas
DAC and other methods are unsupervised. GS was tested across
all test images, but was unable to segment any image properly.

C. Experimental Setup

For comparison purposes, published MATLAB code for the
gradient vector flow (GVFS) snake [16], VFC [17], fast active
contour for global minimization (FAC) [23] and active contour
without edge (ACWE) [21] were downloaded from [51], [52],
[53] and [54]. The codes obtained from these websites were
written for experimental research purposes without optimization.
We modified these codes using MATLAB vector optimization to
allow fair speed comparison with DAC.

TABLE II
SINGLE SEGMENT AVERAGE F-MEASURE SCORE (MEAN ± STANDARD

DEVIATION) OF DAC, GVFS [16], TS [9] AND VFC [17] OVER 100
IMAGES OF WEIZMANN DATA BASE [27]

Algorithm Average F-measure Score
DAC 0.88±0.060

GVFS 0.75±0.120
TS 0.72±0.153

VFC 0.77±0.140

The initial location of the snake was specified manually for all
images in Test ’B’ as shown in Figs. 9, 10, and 12, while for
Test ’A’ the initial snake was always chosen as an ellipse. For
DAC, TS, and GVFS, the snakes were initialized with q = 250

discrete points. The suitable range of parameters for TS, GVFS
and VFC were chosen from [16] and [17]. Since ACWE and FAC
are region based approaches, ACWE was initialized with a closed
area as shown in Figs. 9, 10, and 12 and the optimal parameters
were chosen from [21] and [23]. However, FAC was initialized
with the original image, because FAC is completely independent
of initial solution. For all methods but DAC, σs was set using the
value provided in the respective papers. For all experiments, DAC
uses rmax = 2000, ∆vmin = 0.5 and ∆vmax = 8, α = 1, β = 0.5,
τ = 0, ε = 10−4 and σs = 0.5. For each normal, the number of
points u was automatically selected so that the normal touched
no other nearby normal. The u + 1 points on each normal were
separated by one pixel. Experiments were performed on a 2.4
GHz, 1G RAM, Intel P4 computer.

D. Test ’A’: Segmentation Using Weizmann [27] Database

We have evaluated the segmentation performance of DAC on
the Weizmann database [27] consisting of 100 images, each of
which contains one foreground object, differing from the back-
ground on the basis of intensity, texture, or other low level cues.
The single object F-measure score [27], a popular segmentation
accuracy measure index, is shown in Table II along with its
standard deviation. From the results, we found the Weizmann
database images are not suitable for ACWE [21] and FAC [23],
because of the variations in intensities of the foreground object.
Therefore, we have not reported the F-measure score for these two
methods. The methods tested here (DAC, GVFS, TS, VFC) only
consider the grey level yet texture features are required to properly
segment six of the images. If these six images were removed, the
F-measure would have been higher for all four methods. Over
the 100 images in the database, DAC provides higher accuracy
relative to the other tested methods.

E. Test ’B’: Boundary Accuracy and Convergence Speed

To measure the quantitative dissimilarity between converged
boundary vc and true boundary vt we have defined the average
shortest distance (ASD), defined as the average shortest distance
of the converged boundary from the ground truth and ground truth
from the converged boundary:

ASD =
1

2q

√√√√ q∑
i=1

min
j=1,2···n

(∥∥vt(sj)− vc(si)∥∥2)

+
1

2n

√√√√ n∑
j=1

min
i=1,2···q

(∥∥vt(sj)− vc(si)∥∥2). (31)
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Fig. 9. Six snake methods applied to eight different images obtained from [15], [16], [49], [50], [27]. Column 1 shows the test images along with the
common initial snake. Column 2 plots the boundary found by the proposed DAC. Columns 3 to 7 show results using five other snake methods [23], [21],
[16], [9], [17]. In each panel, the white line with black border shows the final contour. DAC is the only method that properly identifies the object boundary
in each image; no other method works for all eight images.

TABLE I
AVERAGE SHORTEST DISTANCE (ASD) IN PIXELS AND EXECUTION TIME (ET) IN SECONDS OF DAC COMPARED TO FIVE OTHER METHODS USING EIGHT

TEST IMAGES IN FIG. 9. BOLD TEXT INDICATES BEST (OR CLOSE TO BEST) PERFORMANCE ACROSS ALL METHODS FOR A PARTICULAR IMAGE.

Average shortest distance (ASD) [pixels]
DAC FAC ACWE GVFS TS VFC

(A) 0.89 0.56 0.68 29.17 15.68 13.52
(B) 0.58 0.87 0.80 13.86 0.63 7.62
(C) 1.60 1.60 1.70 2.40 2.80 3.52
(D) 2.81 12.92 14.26 6.48 9.61 7.57
(E) 1.40 1.90 2.70 9.60 36.9 8.65
(F) 2.20 2.00 1.12 26.62 60.3 4.81
(G) 0.60 0.65 0.62 0.97 2.32 0.5
(H) 3.40 104 3.00 3.60 10.6 3.13

Execution time [seconds]
DAC FAC ACWE GVFS TS VFC

13 67 377 208 391 167
3 15 59 109 397 86
7 25 70 90 255 67
11 35 190 146 351 103
5 33 159 148 543 109
14 120 636 357 581 312
6 119 612 323 596 283
5 86 134 73 536 53
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Fig. 10. Six snake methods are applied to five test images containing noise and clutter with the same organization as Fig. 9. Image (I) shows a U-shape
contaminated with Gaussian noise of σ = 30.2dB. (J) and (K) show a natural textured image with natural noise like feature and additive Gaussian noise of
σ = 7.2dB. (L) shows the image of a thorax contaminated with additive salt and pepper noise of σ = 5dB. The last row (M) shows a synthetic image on a
cluttered background. The other four methods are generally ineffective in the presence of noise and background clutter.

The number of points on the converged boundary (q) and ground
truth (n) are not necessarily equal.

The qualitative and quantitative results of DAC compared to
FAC [23], ACWE [21], GVFS [16], TS [9] and VFC [17] for
both natural and synthetic images are presented in Figs. 9 and 10
and Tables I and III. Figs. 9 and 10 shows separate images for the
initial contour and the final solution for all five methods. Tables I
and III show the quantitative values of ASD (31) and execution
time (ET) for all six methods. We chose suitable test parameters
from the respective papers of all compared methods for as fair a
comparison as possible.

In Figs. 9 and 10, DAC accurately detects the desired object
boundary for all images. Because of the non-stationary curvature-
dependent prior (P ) and image statistic dependent measurement
uncertainty R, DAC is able to differentiate between true high
curvature and the false high curvature (generated due to noise or
background clutter) with no parameter tuning. In Tables I and III,
DAC is consistently significantly faster and with an accuracy
comparable to or significantly better than all compared methods.

FAC [23] integrates the concept of geometric active con-
tour [30] with denoising model of Rudin et al. [55]. FAC uses fast
and efficient numerical schemes for contour evolution, therefore
showing a relatively fast speed in Tables I and III. However, FAC
fails for images D, H, I, L and M. The object of interest of
image D consists of multiple homogenous regions, images H, I,
and L have small intensity differences between background and
foreground, and FAC’s denoising model smoothed the object of
interest along with the background clutter and treated them as a

single object for image M.
ACWE [21] employs a level set based curve evolution tech-

nique to solve the Mumford-Shah model [33] with a piecewise
constant approximation, such that the background and foreground
can be represented using two constants. Therefore, ACWE model
does not use the gradient as the stopping criterion and instead uses
intensity homogeneity constraints. ACWE successfully identified
the region of interest for most of the images. ACWE failed for
images D, I, L and M because the region of interest could not be
described by a single constant (D), ACWE converges to a local
minimum generated by noise or clutter (I, M), or because the
object of interest is not properly closed (L).

TS [9] failed to locate the true boundary for most images. TS
uses an iterative gradient descent optimization technique (same
as for GVFS [16] and VFC [17]); as a result, TS is sensitive to
local minima and has a slower convergence rate. Furthermore, TS
uses local image gradient as the external energy and, as a result,
an initial solution far from the true solution may be trapped or
take a long time to converge.

To attract an initial active contour from a greater distance,
GVFS and VFC use a partial differential and a kernel based
diffusion technique to spread out the external energy throughout
the image. As a result, both GVFS and VFC are less sensitive
to the initial solution and converge faster compared to TS. The
main cause for the failure of GVFS is twofold. First, the diffusion
function used for spreading the image potential does not work
properly if the nature of the gradient is not simple. Second,
high curvature boundaries hinder the GVFS to converge towards



TABLE III
AVERAGE SHORTEST DISTANCE (ASD) IN PIXEL AND EXECUTION TIME (ET) IN SECOND OF DAC COMPARED TO FIVE OTHER METHODS FOR FIVE

DIFFERENT NOISY IMAGES IN FIG. 10. BOLD TEXT INDICATES BEST PERFORMANCE ACROSS ALL METHODS FOR A PARTICULAR IMAGE.

Average shortest distance (ASD) [pixels]
DAC FAC ACWE GVFS TS VFC

(I) 3.70 50.7 39.9 7.30 13.9 8.48
(J) 1.60 2.05 1.69 8.84 5.81 11.29
(K) 2.80 1.77 1.44 7.96 19.45 10.64
(L) 3.00 55.3 41.8 9.90 13.55 8.24
(M) 3.50 71.8 13.44 38.6 43.7 9.14

Execution time (ET) [second]
DAC FAC ACWE GVFS TS VFC

15 37 223 148 683 137
10 44 281 306 596 257
18 26 162 189 601 129
16 26 171 94 539 78
9 74 468 192 603 209

Initial AC DAC IS [6] LS [11] GS [39]

Fig. 11. Performance of DAC, intelligent scissors [6] (LS), level set [11]
(LS) and greedy snake [39] (GS) in a cluttered environment.

the correct solution. VFC uses a noise robust computationally
efficient kernel based diffusion technique to handle complex
boundary edges. Therefore, VFC performed better than GVFS,
both in terms of accuracy and speed. The primary reasons for VFC
failure are due to incorrect diffusion of gradients and convergence
to local minima in the presence of background clutter and noise.

Finally, as a qualitative comparison to other methods, in Fig. 11
the segmentation result of DAC is compared to level set [11]
(LS), intelligent scissors (IS) [6], and greedy snake (GS) [39].

F. Test ’C’: Evaluation of DAC Capabilities

This section experimentally assesses the DAC in terms of the
five criteria identified in Section II-C: 1) noise and background
clutter, 2) high curvature regions, 3) parameter sensitivity, 4)
initialization sensitivity, and 5) stopping criteria and rate of
convergence.

1) Robustness to Noise and Background Clutter: The perfor-
mance of DAC in the presence of noise and background clutter is
demonstrated in Figs. 9 and 10 and Tables I and III using natural
and synthetic images. The DAC accurately identified the object
boundary for all test images. Our method distinguishes between
noise and true high-curvature segments in three ways:

1) Because the gradient is computed via convolution, as in (2),
there is some degree of smoothing, which reduces noise
more than structure.

2) Because there is a minimum step size ∆vmin > 0, a
given noise point will be felt by zero, or at most one,
measured points, whereas a curvature segment will be felt,
and constrained, by multiple measurements.

3) Finally, the computation of the measurement variance r in
(28) leads to a preference for curves along uniform gradi-
ents, rather than curves which encounter varying gradient
levels.

The limited number of measurements and greater value of σg
allow DAC to pass through points of noise and background clutter.

2) High curvature object boundaries: The ability of DAC
to capture high curvature regions compared to FAC [23],
ACWE [21], GVFS [16] and TS [9] is tested on a set of five
synthetic images in which a concavity is made tighter and tighter,
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Fig. 13. The ASD (31) as a function of V-angle for DAC, FAC, ACWE,
GVFS, TS and VFC from Fig. 12. The DAC and ACWE methods are similarly
successful, although the DAC outperforms at tighter angles.

a problem of considerable difficulty for most parametric contours.
Fig. 13 plots the ASD as a function of angle, and results for two
of the images are shown in Fig. 12. Only the ACWE and DAC
perform well on this test set; the GVFS, TS and VFC fail to
capture the high curvature region as these are both parametric
active contours that do not incorporate a non-stationary prior
to reduce the penalty near high curvature corners. The DAC’s
abilities to capture high curvature boundaries was demonstrated
via natural images (Test ’B’) and the tests on the Weizmann data
set (Test ’A’).

3) Parameter independency: DAC uses a fixed set of param-
eters (α = 1 and β = 0.5 in (21)) for all of the images in
all of the experiments in this paper. Although most existing
methods [9], [16], [23], [21] require the user to manually set
a fixed prior and other parameters, a fixed prior is inappropriate
for a non-stationary boundary, and image-dependent parameters
are inconvenient when working with varied images. The non-
stationary prior inferred by the DAC from importance sampling
simplifies parameter issues significantly. Essentially, DAC trans-
lates the problem of parameter tuning into the problem of seeking
a good edge probability by carefully choosing the measurement
uncertainty matrix R and non-stationary prior P .

As discussed under Test ’A’, DAC accurately identified the
object boundary for all of these diverse images without a single
change to any parameter settings in all cases.

4) Initialization insensitivity: Fig. 14 shows the convergence
of four different initializations. Whether the snake expands or
contracts is a function of the external mean term µ (24), (23)
(the external mean need to be set manually). In contrast, the
traditional snake (TS) requires an initial snake close to its solution
to ensure speed of convergence and accuracy [16]. Although
GVFS increases the capture range, the method is not able to
find the correct boundary if initialized far from the true boundary.
These phenomena can be observed from Figs. 9, 10, and 12. FAC
and ACWE are region based approaches, so they are not sensitive
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Fig. 12. A test of convergence into a concave region, a challenging task for a snake algorithm. For the proposed DAC, in Column 2, the dots plot the
placement of sample points illustrating the curvature-dependent sampling. Of the other five methods, only the ACWE [21] performs similarly, although at
much greater computational cost. The degree of convergence of the panels in this figure is plotted in Fig. 13.

Contracting No external No external Expanding
force (τ = −5) force (τ = 0) force (τ = 0) force (τ = 5)

Fig. 14. Convergence pattern of DAC for a variety of initial positions given
a U-shaped object. For each case, DAC demonstrates insensitivity to initial
snake position by converging to the correct solution in each case.

to initial positions.
5) Stopping criteria and convergence rate: The comparison

of computational complexity is ambiguated by the difficulty of
assessing convergence in algorithms which converge very slowly.
For all examples in this paper, DAC reached the ASD limit (ε =

10−4) quite quickly and so always terminated on the basis of
ASD convergence. For the other compared methods, the slower
convergence rate frequently led a simple threshold to lead to early
termination. Therefore we manually tested the convergence for all
images displayed in this paper.

A much more convincing demonstration, independent of stop-
ping criterion, is shown in Fig. 15, plotting ASD as a function of
computation time. The convergence rate of DAC is fast, roughly
two orders of magnitude faster, compared to other methods as
noted in Tables I and III. Such an improvement in convergence
rate offers potential for more advanced segmentation tasks, such
as real-time tracking or three-dimensional problems.

G. Parametric vs. Non-Parametric Active Contours

Parametric and nonparametric methods of segmentation are
fundamentally very different, making any comparison difficult.
Aspects of the trade-offs between the two approaches are illus-
trated in images (P,Q,R and S) of Fig. 16. Non-parametric active
contours inherently perform multiple object segmentation (P and
Q) and can capture high-curvature boundaries, since there is no
explicitly modeled boundary. Similarly, non-parametric methods
are robust to non-uniform and low-contrast boundaries (R). In
contrast, non-parametric approaches can not handle discontinu-
ous boundaries (S) and are usually computationally slower than
parametric methods.

We make no claims regarding the superiority of DAC, or
parametric methods in general, over non-parametric ones. Our
claim is that for single-object segmentation in the presence of
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Fig. 15. Convergence rate for different methods for brain image. Each method
is able to capture the true object boundary but with a different convergence
rate. Red, white, and blue lines (second row of Fig. 15) are the initial,
intermediate and final snake positions respectively. The ASD from ground
truth is shown in first row of Fig. 15.

clutter, DAC is able to outperform other parametric and non-
parametric methods, both in terms of convergence accuracy and
computational complexity. Clearly for multi-object images (P and
Q [21]) and low-contrast settings (R [21]), nonparametric methods
are the more natural choice.

V. CONCLUSIONS AND FUTURE EFFORTS

A novel active contour method, the DAC, is designed for
accurate boundary extraction, despite image noise and complex
object geometries. Each iteration of the DAC is carried out
in three steps: a Viterbi search to find the image gradients,
importance resampling to generate a non-stationary prior, and a
Bayesian estimator to update the boundary by incorporating prior
shape constraints.

Validation of the DAC is demonstrated experimentally on noisy,
cluttered natural and synthetic images. DAC is demonstrated to
be robust to noise, requires no parameter tuning, is able to capture
high curvature regions, and is insensitive to initialization.

Of all of the parametric active contours tested for finding
the boundary of a single object, DAC is the only one which
detected all boundaries accurately for a fixed set of parameters.
The limitation of DAC and other parametric methods is that they
are designed to find single objects, as opposed to non-parametric
methods, which inherently can identify multiple objects.
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Fig. 16. Four images, illustrating certain tradeoffs between parametric and non-parametric active contours. Parametric methods explicitly model a single
curve, thus nonparametric methods are more naturally suited to the segmentation of multiple objects (P and Q [21]). Parametric and Nonparametric methods
also differ in how they treat low-contrast (R [21]) and discontinuous (S) boundaries.

The computational time of DAC is dramatically lower relative
to other parametric and non-parametric approaches by two orders
of magnitude, a dramatic improvement. Future work is aimed at
further computational improvements, in addition to the possibility
of extensions to three-dimensional deformable surfaces.
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